
Aerosols and Radiative Heating in Hypersonic Flight

- Marwa Majdi, Assistant Research Professor, Atmospheric Sciences
- Experience with hypersonics
- Atmospheric modeling for flight tests
- Aerosol modeling & radiative properties → impacts on heating, sensing, and performance of the hypersonic vehicles
- Research background and interests
- Atmospheric Aerosols: size, composition, optics
- Cloud Microphysics
- Aerosol Modeling: WRF/ WRF-Chem
- Physics-informed ML
- Data Fusion: Radar/GOES/WRF → operational products

Aerosol Optical Depth

NASA MODIS Aerosol Optical Depth on September 2020. Darker = more aerosols. Higher AOD → more absorption/scattering → potential extra radiative heat at the nose."

Research Highlights — Aerosol Radiative Heating

- What happens: Absorbing aerosols (soot/dust) add extra radiative heat (strongest near the stagnation point).
- Why it matters: Small extra radiative heat can tighten Thermal Protection System margins and push designs toward limits.
- What we can model: Aerosol concentrations, size, composition, and optical properties along the flight corridor.
- **How we compute it:** Estimate and add a radiative heat term (Δq_rad) to the surface heat balance and couple it to Thermal Protection System analysis to set the right margin and help operations pick safer windows.